COMPARISON OF ANALGESIC EFFICACY OF SYSTEMIC LIGNOCAINE COMBINED WITH DEXAMETHASONE AND LIGNOCAINE INFUSION IN ADVANCE CANCER PATIENTS

Syed Majid Waseem, Amjad Iqbal
Combined Military Hospital/National University of Medical Sciences (NUMS) Rawalpindi Pakistan

ABSTRACT

Objective: To determine the analgesic efficacy of lignocaine combined with dexamethasone and lignocaine infusion in patients with advanced cancer disease.

Study Design: Randomized controlled trial.

Place and Duration of Study: Pain centre Combined Military Hospital Rawalpindi, from Apr 2016 to Nov 2016.

Material and Methods: Total 122 patients, 61 in each group, fulfilling the inclusion criteria were included in this study after approval of the ethical committee. The technique used was non probability consecutive sampling. Two groups were made; group-A received Lignocaine 2mg/kg and group-B Lignocaine 2mg/kg with dexamethasone 0.15mg/kg in continuous infusion over 30 minutes. Both regimen were administered twice weekly for a period of 12 weeks as an outdoor procedure. Numerical rating scale used to measure severity of pain. Baseline and outcome parameters of all patients' i.e. severity of persistent and breakthrough pain and percentage relief of pain were recorded and compared at 12 weeks. Mean ± standard deviations were calculated for quantitative variables, while qualitative variables presented in frequency and percentages. Chi-square test used for qualitative variables while Independent sample t-test used to compare means. A p-value <0.05 was considered statistically significant.

Results: When results of group-B compared with group-A, there was a significant reduction in severity of persistent pain from 5.68 ± 2.08 to 2.83 ± 1.01 (p-value <0.05), breakthrough pain from 5.90 ± 2.07 to 3.06 ± 1.09 (p-value <0.05). The percentage relief of pain was 45.08 ± 15.01 (%) when compared to baseline i.e. 23.35 ± 8.55 (%) (p-value <0.05).

Conclusion: Lignocaine with dexamethasone has shown to be effective in reducing complex cancer related pain and disability when compared with Lignocaine alone.

Keywords: Breakthrough pain.

INTRODUCTION

Pain is the most frequent and feared presentation among patients with widespread metastatic advanced cancer. The prevalence of pain in cancer patients ranged from 52% to 77%1. According to the recent studies, the prevalence of pain in patients with advanced cancer ranges from 62%-86%1. The neurophysiology of cancer pain is complex, as it shares inflammatory, neuropathic, ischemic and compression mechanism2. The nature of pain in patients with advanced cancer is nociceptive, neuropathic, visceral and mixed form may also present2. Surgery, chemotherapy and radiotherapy are among cancer treatments but these can cause persistent and breakthrough pain in cancer survivors, 50% of them may experience persistent pain and about 40-86% experienced breakthrough pain as reported in various studies3. This will adversely affect their quality of life.

Different pharmacological and non pharmacological methods are in practice to get optimum continuous pain relief in patients with complex cancer pain and among them are NSAID’s, Opioids, NMDA antagonist, Tricyclic anti depressants, anti convulsants, sodium channel blockers, topical agents, different neuraxial blocks and biopsychosocial interventions4-5. To some extent these methods are helpful in treating complex

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cancer pain but the long term consequences of
tolerance, dependency, hyperalgesia and sensiti-
ization may limit their role as a long term
measures.

Lignocaine has been used intravenously
since 1960 for several indications, such as
regional blocks, antiarhythmic, as analgesic in
neuropathic and central pain, as adjuvant in
postoperative pain refractory to opioids. The
analgesic action of intravenous lignoicaine
reflects the multifactorial aspect of its action,
resulting from the interaction with Na-channels
and direct or indirect interaction with different
receptors and nociceptive transmission pathways.
The intravenous dose of lignoicaine should not
exceed the toxic plasma concentration of 5µg/
ml, and doses below 5mg/kg administered
slowly (30 minutes), under monitoring, are con-
dered efficacious and safe. The most often
prescribed corticosteroid for pain is dexametha-
sone. Steroids can reduce pain intensity by
inhibiting prostaglandin synthesis and reducing
tumor vascular permeability. Cancer pain is
often under treated due to continuous change
in its nature and presence of pain at different
anatomical sites. Despite using all the measures,
there is dissatisfaction among patients and
relatives due to continuous increase in severity
of pain and ultimately failure to treat pain. The
rationale of this study is to prevent or reduce
persistent and breakthrough pain in patients with
advanced cancer, which ultimately improve the
quality of life and give sense of satisfaction to the
dissatisfied patients and relatives.

MATERIAL AND METHODS

This randomized controlled trial was
conducted after approval of the ethical review
committee of the Hospital, patient’s consent and
explaining the risks and benefits to the patients.
This study was conducted in the department
of Pain Medicine, Combined Military Hospital
Rawalpindi. The duration of the study was six
months, from 01 Apr 2016 to 30 Nov 2016.

The sample size was calculated by using
WHO sample size calculator. Keeping level of
significance 5% and power 90%, anticipated
population proportion 1 (P1) was 52% and popu-
lation proportion 2 (P2) was 77%. The sample
size was 61 in each group. The total sample size
of study was 122. The technique used was non
probability consecutive sampling.

All the patients who reported to pain clinic
with the evidence of complex cancer pain due to
advanced metastatic disease and declared non
responder to maximum oral or systemic analgesic
were included in this study. All the patients
with history of heart block, uncontrolled diabetes
mellitus, cardiovascular instability, known hyper-
sensitivity to the drugs (Lignoicaine and Dexam-
ethasone), hematological malignancy, abnormal
cognition, terminally ill patients having life
expectancy less than 3 months and the patients
on beta blocker were excluded from the study.

Patients were divided in two groups (group-
A and group-B) by computer generated method.
As per study protocol, all the patients were inter-
viewed, briefed and counseled about the proce-
dure. Pre intervention history, clinical exami-
nation and investigations were reviewed and
vitals of all the patients were recorded on the
proforma and selected for the drug intervention.

Group-A received Lignoicaine infusion 2mg/kg
and group-B received Lignoicaine 2mg/kg with
Dexamethasone 0.15mg/kg in continuous infu-
sion over 30 minutes. During continuous infusion
patient vitals were monitored. These infusions
were given twice weekly for a period of 12 weeks
as an outdoor procedure. In groups, pre and post
infusion persistent and breakthrough pain and
percentage relief of pain were recorded at base-
line and 12 week. Numerical rating scale was
used to measure severity of persistent and break-
through pain. All the parameters related to the
severity of pain categorized numerically from 0 to
10 (cm), 0 stands for no pain and 10 for pain as
bad as you can imagine. Pain relief parameter
was mentioned in percentage, ranges from 0% to
100% (0%=no relief of pain, 100%=complete relief
of pain). As per study protocol, average pain in
last 24 hrs experienced by the patient recorded
as persistent pain, no of episodes of worst pain
in
Analgesic Efficacy in Advance Cancer Patients

Pak Armed Forces Med J 2018; 68 (5): 1111-15

experienced in last 24 hr recorded as breakthrough pain, percentage pain relief after intervention recorded in percentage (0 to 100%). In each group, baseline parameters of all patients’ i.e age, sex, weight, height, persistent pain, breakthrough pain and percentage relief of pain were compared with outcome parameters at 12 weeks. Data was analyzed with the help of statistical software SPSS Version 20. Mean and standard deviation were calculated for quantitative variables, while qualitative variables were presented in frequency and percentages. Chi square test was used for qualitative variables while Independent samples t-test was used to compare means. A p-value of less than or equal to 0.05 was considered statistically significant.

RESULTS

Total 122 patients were included in the study, divided into two groups. Both groups had 61 patients in each. Mean age in group-A and group-B were 59.80 ± 5.07 and 59.24 ± 5.90 years respectively (p=0.58). Weights of the patients were also not statistically significant between two groups. Majority of the patients were male (59%) in group-A and were female (54.1%) in group-B respectively as shown in table-I.

As per study results, in group-A (Lignocaine alone) there were reduction in parameters when compared baseline with 12 weeks as, Persistent pain reduced from 5.59 ± 2.45 to 4.81 ± 1.96 (p-value=0.05), and breakthrough pain from 7.04 ± 2.25 to 6.90 ± 1.85 (p-value 0.71). The percentage relief of pain was 20.77 ± 6.13 when compared at baseline 18.4 ± 7.57 % i.e. (p-value 0.06). All the parameters except persistent pain were showed statistically insignificant results as p-value >0.05 shown in table-II.

Similarly, in group-B (Lignocaine + dexamethasone infusion) there were reduction in parameters when compared baseline with 12 weeks as, Persistent pain reduced from 5.26 ± 1.83 to 3.01 ± 0.76 (p-value<0.05), and breakthrough pain from 5.90 ± 2.07 to 3.06 ± 1.09 (p-value <0.05) The percentage relief was 45.08 ± 15.01 when compared to baseline i.e. 23.35 ± 8.55 (p-value <0.05). All the parameters showed statistically significance results i.e. (p-value <0.05) as shown in table-III.

DISCUSSION

The analgesic efficacy of intravenous Lignocaine was first reported in cancer and post-operative patients7. Moreover, Lignocaine shown
to provide analgesia by blocking both peripheral and central voltage-dependent sodium channels. It can also relieve both deafferentation and central pain7. Steroids are among the most commonly used medications in palliative care. A Canadian study of ambulatory palliative care, patients with cancer demonstrated that 40% of patients were receiving corticosteroids and dexamethasone was the medication most commonly added by palliative care specialists8. Previously, various randomized controlled trials (RCTs) have already assessed the efficacy of IV Lignocaine and dexamethasone in non-cancer and cancer related neuropathic pain such as diabetic neuropathy, postherpetic neuralgia, spinal cord injury, peripheral nerve injury, post-amputation pain, sciatica, and neuralgia9,15. As per author knowledge, it is the first comparative prospective study of its own kind in which analgesic efficacy of two different regimens; Lignocaine combined with dexamethasone and Lignocaine alone were compared in patients with advance cancer disease and still no randomized study has determined the analgesic efficacy of Lignocaine with dexamethasone infusion.

In this study, we evaluated the analgesic efficacy of Lignocaine with dexamethasone and Lignocaine infusion. In literature; different doses of Lignocaine have been tried but lignocaine toxicity is more likely to manifest when its plasma concentration reaches 5µg/mL16. Doses between 1mg and 2mg/kg administered as continuous infusion of 1.5mg/kg/h, which correspond to plasma concentrations of 2µg/ml are considered small17. The toxic dose seems to change in patients with terminal diseases18. The intravenous administration of low doses of Lignocaine was effective in the management of chronic pain refractory to conventional oral treatment18.

In our study, Lignocaine infusion group showed reduction in all parameters from baseline when compared at 12 weeks but the results were statistically insignificant except there was a significant reduction in persistent pain. In Lignocaine with dexamethasone infusion group, there was reduction in all parameters when compared to baseline. There was statistically significantly decrease in severity of persistent and breakthrough pain. The incidence of breakthrough pain and percentage relief of pain was also improved in this group.

In a study done by Peixoto RD, Hawley P, signified that intravenous lignoicaine infusion 5mg/kg has been clearly demonstrated as effective for pain relief. In this study a total of 122 lignoicaine infusions were administered in 51 cancer patients. Twenty-five (49\%) had a major response, 12 (23.5\%) had a minor response, and 14 (27.5\%) were considered nonresponders.19 Lignocaine infusion is a useful option to consider when other pain treatments have not been successful19. Sharma, Rajagopal, Palat, Singh, Haji, Jain, conducted a study in which eligible patients received both Lignocaine and placebo infusions separated by two weeks. Primary endpoints were magnitude and duration of pain relief. Fifty patients were included in the study. Pain relief was significantly better (\(p<0.001\)) and more patients reported a decrease in analgesic requirements (\(p=0.0012\)) after lignoicaine infusion than after placebo. Onset of analgesia was noted at a mean of 40 ± 16.28 minutes after initiation of infusion of IV lignoicaine. Mean duration of this analgesia, 9.34 ± 2.58 days after the single infusion, was significantly longer than that for placebo (\(p<0.01\))20. Hanks et al. observed that dexamethasone showed tendency for better results than prednisolone in patients with pain due to compression of the nerve. A total of 16 out of 34 patients responded to the treatment: 8 (38\%) out of 21 patients treated with prednisolone and 8 (62\%) out of 13 patients treated with dexamethasone. However, this trend could have been associated with relatively higher doses of dexamethasone (4mg daily, \(n=7\); 8mg, \(n=4\), 16mg, \(n=2\)) compared with the doses of prednisolone (30mg daily, \(n=10\); 20mg or less, \(n=11\))21. As per results, Lignocaine infusion with dexamethasone showed statistically significant reduction in severity of persistent and breakthrough pain. There was reduction in incidence of breakthrough
pain and ultimately decreased in rescue analgesic required to treat that pain. The percentage relief of pain was 45.08 ± 15.01 when compared to baseline i.e. 13.35 ± 8.55 (p-value<0.05).

Although intravenous Lignocaine has been used to relieve some kinds of chronic pain but combining Lignocaine with dexamethasone the results are very promising as shown in results. Keeping in mind the results, its safety profile at this dose, intravenous lignocaine with dexamethasone has been used effectively to relieve cancer related pain without producing major adverse effects. Similarly, in our study, the infusions caused minor side effects and during the infusions all the patients remained haemodynamically stable. Moreover, no major complications were observed. Finally, our results should be interpreted with some caution given the fact that the drugs follow up and effects were studied till 12 weeks and the author did not follow the drug effects and outcome parameters after 12 weeks. Although intravenous Lignocaine with dexamethasone is not a first line treatment but when first line medications fail to help, pain specialists may try it as an add-on treatment.

CONCLUSION

Lignocaine with dexamethasone has been shown to be effective in reducing cancer related pain, disability and rescue analgesia requirement when compared with Lignocaine alone.

CONFLICT OF INTEREST

This study has no conflict of interest to declare by any author.

REFERENCES