ROLE OF MONOTHERAPY ALPHA BLOCKERS VERSUS COMBINATION ALPHA BLOCKERS AND ANTAGONISTS IN THE MANAGEMENT OF LOWER URINARY TRACT SYMPTOMS/BENIGN PROSTATIC HYPERPLASIA

Muhammad Tanveer Sajid, Muhammad Akmal, Imran Khan, Muhammad Nawaz, Khubaib Shahzad, Hussain Ahmad
Armed Forces Institute of Urology/National University of Medical Sciences (NUMS) Rawalpindi Pakistan

ABSTRACT

Objective: To compare the mean international prostate symptom score between monotherapy (alpha blockers) versus combination therapy (alpha blockers plus cholinergic antagonist) in the management of lower urinary tract symptoms due to benign prostatic hyperplasia.

Study Design: Quasi experimental study.

Place and Duration of Study: Armed Forces Institute of Urology Rawalpindi, from Sep 2018 to Feb 2019.

Methodology: One hundred and sixty male patients, who presented with lower urinary tract symptoms secondary to benign prostatic hyperplasia with prostate size up to 70 grams were enrolled. Patients in group I received Tamsulosin 0.4 mg OD + placebo while those in group II received Tamsulosin 0.4 mg OD + Solifenacin 5mg OD for 4 weeks. Baseline and Post 04weeks’ treatment international prostate symptom score was recorded and analyzed.

Results: Mean age of presentation in group I was 57.44 ± 8.74 years while in group II, it was 56.43 ± 8.98 (p=0.47). Baseline characteristics were similar in both groups. Baseline international prostate symptom score was 19.11 ± 7.93 in group I and 20.01 ± 8.18 in group II respectively (p=0.49). In group I, mean international prostate symptom score at 4 weeks was 16.71 ± 7.86 and in group II, it was 12.48 ± 8.04 (p-value <0.001), implying that international prostate symptom score was significantly lower in group II in comparison with group I at 4 weeks.

Conclusion: Statistical significant difference of combination therapy of α-blocker and antimuscarinic compared with α-blocker monotherapy was observed in the present study.

Keywords: Cholinergic antagonists, Lower urinary tract symptoms, Prostatic hyperplasia, Solifenacin, Tamsulosin.

INTRODUCTION

Benign prostatic hyperplasia (BPH), one of the most common urinary disorders affecting elderly, is a recognized major cause of lower urinary tract symptoms (LUTS) having considerable negative impact on patients’ health-related quality of life (QoL) (especially sleep, emotional wellbeing and routine daily activities)1. BPH currently affects 60% of men over 60 years of age and 90% of men in their 8th decade and approximately, in 2018, 1 billion new BPH cases were diagnosed worldwide2. The epidemiology of LUTS in today’s ageing population, which is expected to grow exponentially over the next few decades due to increasing life expectancy, will pose major financial threat to already over-whelmed healthcare systems across the globe. The pathogenesis of BPH, primarily a non-malignant disease of the stroma and epithelial tissues, remains incompletely understood hovering around multiple factors, essential being advancing age and androgen-dependent prostate being exposed to sex hormones3.

BPH-LUTS constellation encompasses voiding symptoms (intermittency, slow stream and hesitancy), storage symptoms (urgency, frequency, nocturia) and/or post-micturition symptoms (post-micturition dribbling, incomplete bladder emptying). Knutson et al found that 50% of patients with BPH had overactive bladder (OAB), which may be the principal or major contributory cause of LUTS4. Storage symptoms of OAB espe-
cially nocturia, the most troublesome/bother-
some LUTS, is highly prevalent coexisting in up
to 42% of men aged ≥75 years leading to higher
rate of depression and sleep disturbances.
Because of the similarities and the overlap in
symptoms of BPH and OAB, it can be difficult to
separate the two conditions clinically⁵.

Conventional options available in urological
armamentaria to manage BPH-LUTS are watchful
waiting, lifestyle modification, pharmacological
therapy and surgery. Medical intervention, a
highly efficacious modality, revolves around
α-blockers, antimuscarinics and 5α-reductase
inhibitors (5-ARIs), used alone or in combination.
However, α-blocker monotherapy, the most fre-
quently prescribed medication for majority of men
with moderate-to-severe LUTS associated with
BPH; didn’t have any impact on nocturia⁶. The
storage component is commonly undertreated
and antimuscarinics are infrequently prescribed
(<25% reported to receive an anti-muscarinic)
due to a widely held, yet unverified, fear of post-
void residual (PVR) increase, or, worse, acute
urinary retention (AUR)⁷.

Tamsulosin, a selective inhibitor of a1A/1D-
adrenoceptors expressed amongst smooth mus-
cles of ureter, trigone, prostate and bladder neck,
relaxes these smooth muscles leading to reduced
bladder outlet resistance and voiding pressure
thus effectivly decreasing incidence of dysuria,
frequency, and pain compared to placebo⁸.
Solifenacin inhibits acetylcholine binding on
all five subtypes of G-protein-coupled cholinergic
reporters, M2/3 being most frequently found
detrusor smooth muscle, interstitial and nerve
cells of bladder, effectively reducing spontaneous
myocyte activity leading to decreased frequency
as well as intensity of bladder contractions. The
international prostate symptom score (IPSS) is a
self-administered, reproducible and validated
psychometric tool allowing objective quantifica-
tion of disease severity once diagnosed and
determine response to therapy⁹.

In recent years, several randomized, double-
blinded trials have demonstrated that combina-
tion therapy is more effective and safe particu-
larly tackling most bothersome nocturia when
compared with monotherapy¹⁰,¹¹. Safety profile
studies of anticholinergics in patients at risk for
AUR have clearly shown that the incidence of
urinary retention is very rare¹². There was limited
data of well designed local study leading to
weak endorsement of use of potentially-effective
anticholinergics in clinical practice. Therefore, we
aimed to further analyze clinical significance of
combination of tamsulosin and solifenacin in
reducing LUTS associated with BPH in our target
population.

METHODOLOGY

Current study was conducted at Armed
Forces Institute of Urology, Rawalpindi over six
months from September 2018 to February 2019.
The study protocol was approved by the hospital
ethical review Committee (Certificate no Uro-
01/ERC-104585/TRG/19). Non probability con-
secutive sampling technique utilized at out-
patient department to enroll 160 patients (WHO
calculator, confidence interval 95%, power of
test 80%, mean IPSS population I 7.4 & II 9.713)
after satisfying inclusion criteria (age 40-70 years,
LUTS secondary to bladder outlet obstruction
with prostate size up to 70 grams, maximum
urinary flow rate of ≤15 ml/sec, nocturia (≥1 void
per night) & moderate to severe IPSS score. Patients
having neurogenic bladder, uncontrolled
hypertension, elevated prostate specific antigen,
anticholinergics or α-blockers use in past, ure-
thal stricture, PVR >150ml, congestive cardiac
failure or history of prostate surgery were exclu-
ded. Randomization into two groups (80 each)
was done by computer generated random num-
ber table and written informed consent obtained.
Both investigators and patients were blinded to
the randomization scheme and medications. Se-
quently numbered containers having Tamsu-
losin + placebo or solifenacin + Tamsulosin were
administered by duty nurse knowing allocation
sequence and patient grouping.

Patients in group I (alpha blocker group)
received Tab. Tamsulosin (0.4 mg) OD and
placebo while patients in group II (Combination group) received Tab. Solifenacin (5mg) OD plus Tab. Tamsulosin (0.4 mg) OD for 4 weeks. IPSS was recorded at day one and after 4 weeks of treatment on a pre-designed proforma by investigators involved in the study.

Statistical analysis was done using SPSS version 24. Descriptive statistics were used to calculate means ± standard deviation for quantitative variables. Frequencies with percentage were calculated for qualitative variables. Effect modifiers like age, size of prostate, flow rate, nocturia were controlled by stratification and t-test applied post stratification. A p-value ≤0.05 was considered significant.

RESULTS

A total of one hundred and sixty male were enrolled and randomly allocated. Baseline characteristics were similar in both groups. Both groups were comparable in terms of BMI, Comorbid,

<table>
<thead>
<tr>
<th>Demographic variable</th>
<th>Group I (n=80) (Tamsulosin)</th>
<th>Group II(n=80) (Solifenacin + Tamsulosin)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) (Mean ± SD)</td>
<td>57.44 ± 8.74</td>
<td>56.43 ± 8.98</td>
<td>0.47</td>
</tr>
<tr>
<td>Age Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-55 Years</td>
<td>27 (33.75%)</td>
<td>33 (41.25%)</td>
<td>0.327</td>
</tr>
<tr>
<td>56-70 Years</td>
<td>53 (66.25%)</td>
<td>47 (58.75%)</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>31.54 ± 3.92</td>
<td>32.38 ± 3.63</td>
<td>0.163</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>48 (60%)</td>
<td>45 (56.2%)</td>
<td>0.63</td>
</tr>
<tr>
<td>Diabetes</td>
<td>19 (23.8%)</td>
<td>23 (28.8%)</td>
<td>0.47</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>24 (30%)</td>
<td>29 (36.3%)</td>
<td>0.40</td>
</tr>
<tr>
<td>COPD</td>
<td>08 (10%)</td>
<td>07 (8.8%)</td>
<td>0.79</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild CCI 1-2</td>
<td>27 (33.8%)</td>
<td>23 (28.8%)</td>
<td>0.71</td>
</tr>
<tr>
<td>Moderate CCI 3-4</td>
<td>48 (60%)</td>
<td>50 (62.5%)</td>
<td></td>
</tr>
<tr>
<td>Severe CCI >5</td>
<td>05 (6.2%)</td>
<td>07 (8.8%)</td>
<td></td>
</tr>
<tr>
<td>Prostate Size (Gram) (Mean ± SD)</td>
<td>48.29 ± 10.14</td>
<td>49.29 ± 10.96</td>
<td>0.55</td>
</tr>
<tr>
<td>Stratified Prostate Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤50 GRAMS</td>
<td>59 (73.75%)</td>
<td>53 (66.25%)</td>
<td>0.30</td>
</tr>
<tr>
<td>≥51-70 GRAMS</td>
<td>21 (26.25%)</td>
<td>27 (33.75%)</td>
<td></td>
</tr>
<tr>
<td>Urinary flow rate (ml) (Mean ± SD)</td>
<td>11.36 ± 2.94</td>
<td>10.68 ± 2.70</td>
<td>0.13</td>
</tr>
<tr>
<td>Stratified Flow Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-15 ml/sec</td>
<td>39 (48.8%)</td>
<td>27 (33.8%)</td>
<td>.054</td>
</tr>
<tr>
<td><13 ml/sec</td>
<td>41 (51.3%)</td>
<td>53 (66.3%)</td>
<td></td>
</tr>
<tr>
<td>Nocturia (Voids/Night) (Mean ± SD)</td>
<td>3.84 ± 1.55</td>
<td>3.95 ± 1.48</td>
<td>0.64</td>
</tr>
<tr>
<td>Stratified Nocturia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3 VOIDS/NIGHT</td>
<td>38 (47.5%)</td>
<td>32 (40.0%)</td>
<td>0.34</td>
</tr>
<tr>
<td>>3 VOIDS/NIGHT</td>
<td>42 (52.5%)</td>
<td>48 (60.0%)</td>
<td></td>
</tr>
<tr>
<td>Counselling of the Patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>63 (78.8%)</td>
<td>64 (80%)</td>
<td>0.85</td>
</tr>
<tr>
<td>No</td>
<td>17 (21.2%)</td>
<td>16 (20%)</td>
<td></td>
</tr>
<tr>
<td>Urine Vol (ml) (Mean ± SD)</td>
<td>326.06 ± 36.01</td>
<td>336.24 ± 37.37</td>
<td>0.81</td>
</tr>
<tr>
<td>Post-Void Residual Volume (ml) (Mean ± SD)</td>
<td>62.70 ± 18.24</td>
<td>62.20 ± 18.82</td>
<td>0.86</td>
</tr>
</tbody>
</table>

In group I mean baseline IPSS was 19.11 ± 7.93 while in group II it was 20.01 ± 8.18, prostate size, urine flow rate and nocturia. Mean age of presentation in group I was 57.44 ± 8.74 and 56.43 ± 8.98 years in group II respectively (p=0.47) (table-I).
statistically insignificant ($p=0.49$). Mean IPSS at 4 weeks in group II (alpha blockers and anticholinergics) was significantly lower in comparison with group I (alpha blockers) [16.71± 7.86 vs 12.48 ± 8.04, p-value 0.001] (table-II). Similar trend was noted when data was stratified with respect to age, prostate size, baseline IPSS, urine flow rate coexisting in up to 42% of men aged ≥75 years leading to higher rate of depression and sleep disturbances14. The disease entity necessitates appropriate attention due to ever increasing socioeconomic implications in wake of increasing life expectancy of men$^{11-15}$.

Table-II: International Prostate Symptom Score in both groups baseline, baseline stratified and at 4 weeks post treatment.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group I (n=80) (Tamsulosin)</th>
<th>Group II (n=80) (Solifenacin + Tamsulosin)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline International Prostate Symptom Score (Mean ± SD)</td>
<td>19.11 ± 7.93</td>
<td>20.01 ± 8.18</td>
<td>0.49</td>
</tr>
<tr>
<td>Stratified Baseline International Prostate Symptom Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate International Prostate Symptom Score 8-19</td>
<td>14.11 ± 3.21</td>
<td>14.02 ± 3.15</td>
<td>0.89</td>
</tr>
<tr>
<td>Severe International Prostate Symptom Score 25-35</td>
<td>29.50 ± 3.22</td>
<td>29.45 ± 3.14</td>
<td>0.95</td>
</tr>
<tr>
<td>International Prostate Symptom Score at 4 weeks (Mean ± SD)</td>
<td>16.71 ± 7.86</td>
<td>12.48 ± 8.04</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table-III: Data stratification of mean international prostate symptom score at 04 weeks with respect to age, prostate size, baseline international prostate symptom score, Urine flow rate and nocturia in both groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group I (n=80) (Tamsulosin) (Mean ± SD)</th>
<th>Group II (n=80) (Solifenacin + Tamsulosin) (Mean ± SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-55 Years</td>
<td>11.93 ± 3.26</td>
<td>6.70 ± 3.30</td>
<td>0.001</td>
</tr>
<tr>
<td>56-70 Years</td>
<td>19.15 ± 8.40</td>
<td>16.53 ± 7.91</td>
<td>0.11</td>
</tr>
<tr>
<td>Stratified Prostate Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤50 gram</td>
<td>12.88 ± 4.86</td>
<td>7.64 ± 4.49</td>
<td>0.001</td>
</tr>
<tr>
<td>≥51-70 gram</td>
<td>27.48 ± 3.23</td>
<td>21.69 ± 3.86</td>
<td>0.001</td>
</tr>
<tr>
<td>Baseline International Prostate Symptom Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>international prostate symptom score 8-19</td>
<td>11.80 ± 3.37</td>
<td>6.71 ± 3.16</td>
<td>0.001</td>
</tr>
<tr>
<td>international prostate symptom score 25-35</td>
<td>26.92 ± 3.22</td>
<td>21.58 ± 3.78</td>
<td>0.001</td>
</tr>
<tr>
<td>Urine Flow Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-15 ml/sec</td>
<td>12.00 ± 3.31</td>
<td>6.04 ± 3.17</td>
<td>0.001</td>
</tr>
<tr>
<td><13 ml/sec</td>
<td>21.20 ± 8.33</td>
<td>15.75 ± 7.79</td>
<td>0.002</td>
</tr>
<tr>
<td>Nocturia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3 Voids/Night</td>
<td>11.89 ± 3.29</td>
<td>6.50 ± 3.15</td>
<td>0.001</td>
</tr>
<tr>
<td>>3 Voids/Night</td>
<td>21.07 ± 8.26</td>
<td>16.46 ± 7.84</td>
<td>0.008</td>
</tr>
</tbody>
</table>

and nocturia. Mean IPSS at 4 weeks in group II was significantly lower (p-value <0.05) (table-III).

DISCUSSION

LUTS are associated with BPH in >90% of cases characterized by a cluster of chronic urinary symptoms, most bothersome being nocturia. Although pharmacological treatment of BPH is a success story in urological clinical practice, it mainly focused on obstructive component. The storage component is commonly undertreated and antimuscarinics are infrequently prescribed (<25% reported to receive an antimuscarinic) due to the limited impact on symptoms.
to a widely held, yet unverified, fear of post-void residual (PVR) increase, or, worse, acute urinary retention (AUR). Combination therapy to treat BPH presenting with both storage and voiding symptoms is the focus of high volume of rapidly evolving research and several studies have favored its efficacy as well as safety. Wu et al. concluded in their study that combination therapy was not only more effective but also cost effective in long term as compared to monotherapy. Similarly in their meta-analysis, Dimitropoulos et al. reported superiority of combination over tamsulosin alone in terms of improvement in IPSS. With this rationale EUA recommended use of anticholinergics in addition if insufficient relief of storage symptoms obtained with alpha blocker monotherapy. Additional studies were warranted to validate and substantiate these findings particularly in local settings due to absence of well-organized study to date.

In our study, a total of one hundred and sixty patients were enrolled. Patients in group I received alpha blockers while group II received alpha blockers and anticholinergics in combination and baseline as well as post 4 weeks therapy IPSS recorded. Our results revealed similar baseline characteristics in both groups. Mean IPSS at 04 weeks in group II was significantly lower in comparison with group I [16.71 ± 7.86 vs 12.48 ± 8.04 with p-value 0.001].

Our data showed concordance with already published data on the subject albeit with different study population. Wang et al. randomized 166 patients having BPH with OAB to receive tamsulosin or its combination with solifenacin respectively to evaluate efficacies as well as safety. Not only IPSS & QoL were found significantly improved in combination therapy group but also objective indexes such as PVR, Qmax, daytime urination frequency, night urination frequency and urge urinary incontinence suggesting it as obviously safe, superior and effective treatment.

Filson et al. performed a meta-analysis of seven pooled placebo controlled randomized trials to compare combination therapy with tamsulosin monotherapy to identify efficacy and safety of combination approach among men BPH-LUTS. Their analysis found significantly greater improvement in IPSS storage sub scores and voiding frequency in patients using combination therapy. Authors recommended combination therapy as being more effective and safe with a minimal risk of increased PVR, decreased maximal urinary flow rate or AUR.

Kaplan et al. recruited 398 men ≥ 45 years of age in double-blind, placebo controlled trial to assess safety, tolerability and efficacy of Solifenacin + tamsulosin combination in men having OAB bladder symptoms after alpha blocker monotherapy. Their analysis revealed that patients on combination modality showed greater reductions in frequency but of statistical insignificance (p=0.135) and statistically significant reductions in urgency (p<0.001).

Lee et al. in their 12-week, randomized, double-blind, placebo-controlled trial randomly allocated 176 patients to receive either tamsulosin 0.4mg or its combination with 5mg solifenacin once daily for 12 weeks. Changes in baseline IPSS, frequency volume bladder diary charts, patient perception of bladder condition (PPBC), uroflowmetry, PVR and voiding/storage IPSS subscores were analyzed. Their results conferred to our study findings revealing significant reductions in IPSS storage sub score, urgency episodes, micturition frequency and improvement in the QoL in combination group.

Kim et al. aimed to determine the benefits and safety of combination treatment through a systematic review and meta-analysis. Sample comprised 3,548 subjects (2,195 experimental subjects and 1,353 controls) from sixteen RCTs. Based upon mean change in baseline IPSS [-0.03 (95% CI: -0.14-0.08)], authors concluded that combination therapy with alpha blocker and anticholinergics is more effective in relieving LUTS due to BPH.

Hao et al. analyzed 4084 patients (2106 (51.57%) patients in co-therapy while 1978
(48.43%) in monotherapy) in their meta-analysis systematically to assess clinical efficiency and safety of co-therapy. Patients receiving tamsulosin & solifenacin combination disclosed significant improvements in Storage IPSS subscore, micturition/urgency episodes per 24 hours. They concluded that antimuscarinics are must add drug regimen for patients with LUTS-BPH, particularly those dominated by storage symptoms. These results together with obtained in this study strongly support use of combination therapy in management of BPH-LUTS with significantly better efficacy in reducing both voiding and storage component.

LIMITATION OF STUDY

The results of present study should be interpreted with care as efficacy was measured after 4 weeks only. Moreover, the study was carried out in a single center with smaller target population. There was no comparison of side effects as well as cost of the treatment. Large multicenter RCTs are required to further clarify the role of combination therapy. Various aspects of drug therapy like cost analysis, patient satisfaction and side effect profile, need to be studied to make this combination modality part of effective BPH care program.

CONCLUSION

Statistical significant difference of combination therapy of α-blocker and antimuscarinic compared with α-blocker monotherapy was observed in the present study in terms of robust reduction in symptoms/ improvement in mean IPSS at 4 weeks in BPH patients.

CONFLICT OF INTEREST

This study has no conflict of interest to be declared by any author.

REFERENCES

