Small Dense Low-Density Lipoprotein Cholesterol as a Novel Biomarker of Coronary Heart Disease
Iffat Saleem, Muhammad Aamir, Zuaja Hina Haroon, Afshan Yasir, Muhammad Usman Munir, Muhammad Anwar
Armed Forces Institute of Pathology/National University of Medical Sciences (NUMS), Rawalpindi Pakistan

ABSTRACT

Objective: To compare serum small dense low-density lipoprotein cholesterol levels in coronary heart disease (CHD) patients and healthy controls.

Study Design: Comparative cross-sectional study.

Place and Duration of Study: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP), Rawalpindi Pakistan, in collaboration with AFIC Rawalpindi from Feb to Dec 2021.

Methodology: A total of 220 participants were selected for the study, 120 healthy controls and 100 CHD patients. Fasting blood samples after 12 hours of fast were collected for lipid profile and small dense low-density lipoprotein cholesterol (sdLDL-C) levels. SdLDL-C levels were analyzed by automated, standardized enzymatic assay on Siemens Advia 1800 automated chemistry analyzer using Ex Denka Seiken kits.

Results: Among the total participants, 154 (70%) were males, and 66(30%) were females. The median age of all participants was 55(IQR: 52-56) years, while their median sdLDL-C was 0.93 (IQR: 0.56-1.08) mmol/L. Results showed that small dense LDL cholesterol serum levels were significantly raised in CHD patients compared to healthy controls (p-value <0.05).

Conclusion: The current study showed that patients with CHD had elevated small, dense LDL-C levels compared to the healthy control group.

Keywords: Coronary heart disease, Novel biomarker, Small dense LDL cholesterol.

How to Cite This Article: Saleem I, Aamir M, Haroon ZH, Yasir A, Munir, Anwar M. Small Dense Low-Density Lipoprotein Cholesterol as a Novel Biomarker of Coronary Heart Disease. Pak Armed Forces Med J 2022; 72(4): 1343-1346. DOI: https://doi.org/10.31253/pafmj.e7214.8085

INTRODUCTION

CHD is the most common condition globally, with high mortality and morbidity.1 Over the past years, numeral studies have described its probable risk factors, including dyslipidemia, diabetes mellitus, smoking and hypertension, so that risk assessment of cardiovascular disease can be done at early stages.2 Dyslipidemia increases the possibility of developing cardiovascular disease(CVD).3 Classically, dyslipidemia is described by the reduced concentration of high-density lipoprotein cholesterol (HDLC) and elevated concentration of triglycerides(TG) and low-density lipoprotein cholesterol(LDL-C).4,5

LDL cholesterol is heterogeneous, consisting of particles with different diameters, chemical composition and density.5,6 LDL cholesterol with higher density and small-sized particles is designated as small dense low-density lipoprotein cholesterol (sdLDL-C). This LDL cholesterol having low density and large particle size is described as light and large LDL cholesterol, and medium-density LDL-C is between these two subtypes. SdLDL-C is more atherogenic as compared to LDL-C.7 As a huge cost is spent on managing CVD, an early biomarker is being searched to predict CHD risk before the event occurs. It has been proved in many clinical and basic studies that sdLDL cholesterol is found to be a risk factor for atherosclerosis development, and raised levels of sdLDL cholesterol are related to CHD development.8

Some studies have proved small dense LDL cholesterol to be a superior marker for cardiovascular disease outcomes.9 Recently, direct assay adjustable to auto analyzers for small dense LDL-C quantification has been developed.10 Studies are available in the West, but no such research is available nationally. As sdLDL-C has been highlighted as a helpful new marker for coronary heart disease risk estimation. Hence this study has been planned to measure sdLDL-C levels in CHD patients and its comparison with healthy controls.

METHODOLOGY

It was a comparative cross-sectional study conducted at the Department of Chemical Pathology and Endocrinology, AFIP, Rawalpindi Pakistan, in collaboration with AFIC, Rawalpindi, from February to December 2021, with prior ethical approval by the
RESULTS

A total of 220 participants were enrolled in our study, out of which 154 (70%) were males, and 66 (30%) were females. The median age of all participants was 55 (IQR:52-56) years (Figure).

Table-I: Baseline Characteristics of Study Population (n=220)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Median (IQR) (25th and 75th Percentiles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>55 (52-56)</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>23.90 (23.30-24.10)</td>
</tr>
<tr>
<td>PGF (mmol/L)</td>
<td>1.08 (1.0-1.5)</td>
</tr>
<tr>
<td>Total Cholesterol (mmol/L)</td>
<td>4.25 (3.64-4.56)</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.36 (1.26-1.44)</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.48 (0.96-1.12)</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>2.64 (2.54-2.70)</td>
</tr>
<tr>
<td>sdLDL-C (mmol/L)</td>
<td>0.93 (0.56-1.08)</td>
</tr>
</tbody>
</table>

Body mass index; BMI, Plasma glucose fasting; PGF, High density lipoprotein cholesterol; HDL-C, Low density lipoprotein cholesterol; LDL-C, Small dense low density lipoprotein cholesterol; sdLDL-C.

Table-II: Comparison between Median (IQR) values of Coronary Heart Disease Patients and Healthy Controls (n=220)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Healthy Controls (n=120)</th>
<th>Coronary Heart Disease (n = 100)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>54 (52-56)</td>
<td>55 (52-56)</td>
<td>0.795</td>
</tr>
<tr>
<td>BMI (kg / m2)</td>
<td>23.90 (23.30-24.10)</td>
<td>23.80 (23.40-24.10)</td>
<td>0.123</td>
</tr>
<tr>
<td>Placental Growth Factor (mmol / L)</td>
<td>5.2 (5.0-5.4)</td>
<td>5.1 (5.0-5.3)</td>
<td>0.757</td>
</tr>
<tr>
<td>Total Cholesterol (mmol / L)</td>
<td>4.34 (3.78-4.57)</td>
<td>4.13 (3.58-4.54)</td>
<td>0.199</td>
</tr>
<tr>
<td>Triglycerides (mmol / L)</td>
<td>1.34 (1.26-1.39)</td>
<td>1.42 (1.26-1.48)</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL-C (mmol / L)</td>
<td>1.10 (1.04-1.16)</td>
<td>0.94 (0.87-0.99)</td>
<td>0.000</td>
</tr>
<tr>
<td>LDL-C (mmol / L)</td>
<td>2.64 (2.54-2.71)</td>
<td>2.64 (2.54-2.70)</td>
<td>0.623</td>
</tr>
<tr>
<td>sdLDL-C (mmol/L)</td>
<td>0.58 (0.48-0.73)</td>
<td>1.08 (1.06-1.09)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Body mass index; BMI, Plasma glucose fasting; PGF, High density lipoprotein cholesterol; HDL-C, Low density lipoprotein cholesterol; LDL-C, Small dense low density lipoprotein cholesterol; sdLDL-C.
DISCUSSION

Our study results revealed that serum levels of sdLDL-C were significantly raised in CHD patient group in comparison to healthy controls. It also exhibited that patients with CHD had reduced HDL-C concentration and increased triglyceride levels. However, the two study groups observed no significant difference between LDL-C. It had been explained that subcontinent Asian Indians have classical dyslipidemia described by reduced HDL-C levels and high triglycerides with almost normal levels of LDL cholesterol when contrasted with the western population, who were found to have raised levels of LDL cholesterol. Patients in our study also have normal range LDL-C concentration.

These findings showed that sdLDL-C level is a clinically helpful biomarker that could be utilized to estimate the future event of CHD even in subjects with serum levels of LDL-C within the normal range. In general practice, for CHD prevention, sdLDL-C is a likely therapeutic target.

Median sdLDL-C concentrations were significantly elevated in patients with CHD in comparison to those not having CHD (1.08 vs 0.58 mmol/L, p < 0.05). These findings are consistent with earlier studies.

A newly established assay for serum sdLDL-C would be easily adjustable to mass screening in common practice, so some prospective research work has evaluated the association between serum levels of sdLDL-C and CHD risk. A multiethnic study of atherosclerosis (MESA) showed a positive association between serum levels of sdLDL-C and CHD risk but observed it as a risk factor in non-diabetics only. Ai et al. revealed that sdLDL-C concentrations were raised in those individuals with CHD compared to those without CHD (0.83 vs 0.63 mmol/L). St Pierre et al. findings explained that sdLDL-C is a strong and independent predictor of CHD in the initial follow-up period of seven years, supporting the present study.

Hoogeveen et al. observed in their study that serum levels of sdLDL-C were strongly associated with a more atherogenic lipid profile and were found to be elevated in diabetic patients than in nondiabetic patients (49.6 vs 42.3 mg/dL, p<0.001). For individuals who were supposed to be at lower cardiovascular risk based on their serum LDL-C, serum levels of sdLDL-C were related to the incidence of CHD in ARIC study participants. The ARIC and SUITA study both demonstrated that subjects with raised serum levels of sdLDL-C were at a significantly higher risk of developing CHD than those with decreased levels of sdLDL cholesterol, supporting the present study.

In a study by Higashioka et al. in 2019, the relation of serum levels of sdLDL-C with incident CHD was also strong after modification for well-identified risk factors for cardiovascular disease, including serum sdLDL-C levels. Their study exhibited that levels of sdLDL-C were strongly related to the development of CHD.

Similarly, in a study piloted by Goel et al. in 2016 in India mean sdLDL-C concentration was raised in patients having coronary heart disease than in those without CHD (16.3 ± 6.8 mg/dl in the CHD group vs 10.1 ± 5.7 mg/dl in the control group, p<0.001). In addition, Mohan et al. observed that patients with CAD had elevated levels of sdLDL-C compared to healthy controls (16.7 ± 11.1 vs 7.2 ± 6.8 mg/dl).

In this study, we observed that sdLDL cholesterol levels were raised in patients with CHD. For patients at intermediate risk of CHD, estimation of sdLDL-C is more clinically useful. Individuals having raised sdLDL-C levels might be assigned more insistent treatment protocols.

In the general population, the predictive ability for risk assessment of CHD could be improved by including sdLDL-C into a model consisting of known risk factors. Estimation of sdLDL-C would be helpful for evaluation of the future risk of CHD even in those patients having normal range LDL-C levels. It may be assumed that raised serum LDL-C levels should be reduced intensively to prevent incident CHD. Further research is needed to elucidate whether the reduction of disease burden due to CHD would sdLDL-C be an appropriate target for intervention or not.

ACKNOWLEDGEMENT

We would like to thank the staff of the Department of Chemical Pathology who helped us to carry out this research.

CONCLUSION

The current study showed that patients with CHD had elevated small dense LDL-C levels compared to the healthy control group, although having comparable LDL-C levels. Serum sdLDL-C is a valuable biomarker that can be used to assess the future onset of CHD even in subjects with normal serum LDL-C levels.

Conflict of Interest: None.

Author’s Contribution

IS: Literature search, data analysis and concept, MA; ZHH: Data interpretation, AY: Study design, MUM: Proof reading, MA: Data collection.
mall Dense Low-Density Lipoprotein Cholesterol

REFERENCES

