Comparison of a Measuring Scale With Hertel’s Exophthalmometer in a Pakistani Adult Population
DOI:
https://doi.org/10.51253/pafmj.v76iSUPPL-1.12213Keywords:
Exophthalmos, Exophthalmometry, Hertel’s, Luedde’s, Measuring scaleAbstract
Objective: To compare Measuring Scale (Modified Luedde’s exophthalmometer) values with Hertel’s exophthalmometer and assess their correlation and interchangeability in clinical practice.
Study Design: Cross-sectional study
Place and Duration of Study: Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi, Pakistan, from Nov 2023 to Apr 2024.
Methodology: A total of 26 patients were enrolled in the study. Exophthalmometry was performed using a Measuring Scale and Hertel’s exophthalmometer on the right eye of adult participants on the same day. Exophthalmometry readings were obtained and analyzed using paired sample t-tests and Bland–Altman plots.
Results: A total of 26 participants were included with a median age of 55 years, with an interquartile range (IQR) of 37-62 years. Mean Hertel’s and Measuring Scale values were 17.81±1.96 mm and 17.77±2.02 mm, respectively. There was no statistical difference between Hertel’s and measuring scale (modified Luedde’s exophthalmometer) measurements (p=0.753).
Conclusion: Hertel’s and Scale measurements are reasonably similar, and there is a statistically significant correlation between the Exophthalmometry measurements observed. Therefore, they can be used interchangeably clinically in resource-limited settings.
Downloads
References
1. Ahmad SS, Anwar R, Khan MA, Usmani N. Evaluation of proptosis: a primer. Ophthalmol 2021; 15(1): 26. doi:
https://doi.org/10.17925/OPHT.2021.15.1.26
2. Lee ACH, Kahaly GJ. Pathophysiology of thyroid-associated orbitopathy. Best Pract Res Clin Endocrinol Metab 2023; 37(2): 101620.
https://doi.org/10.1016/j.beem.2022.101620
3. Butt S, Patel BC. Exophthalmos. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559323/
4. Topilow NJ, Tran AQ, Koo EB, Alabiad CR. Etiologies of Proptosis: A review. Intern Med Rev 2020; 6(3): 10.18103/imr.v6i3.852. https://doi:10.18103/imr.v6i3.852.
5. Diao J, Chen X, Shen Y, Li J, Chen Y, He L, et al. Research progress and application of artificial intelligence in thyroid-associated ophthalmopathy. Front Endocrinol 2023; 15: 1-11.
http://dx.doi.org/10.3389/fcell.2023.1124775
6. Denisova K, Barmettler A. Evaluating the thyroid eye disease patient. Int Ophthalmol Clin 2021; 61(2): 33-52.
https://doi/10.1097/IIO.0000000000000351
7. Lam AKC, Lam C, Leung W, Hung P. Intra‐observer and inter‐observer variation of Hertel exophthalmometry. Ophthalmic Physiol Opt 2009; 29(4): 472–476.
http://dx.doi.org/10.1111/j.1475-1313.2008.00617.x
8. Revankar S, Mehta A. Determination of exophthalmometry values in the North Indian population. Indian J Ophthalmol 2022; 70(8): 3083-3087.
http://dx.doi.org/10.4103/ijo.IJO_489_22
9. Schlund M, Lutz JC, Sentucq C, Bouet B, Ferri J, Nicot R. Prediction of Post-Traumatic Enophthalmos Based on Orbital Volume Measurements: A Systematic Review. J Oral Maxillofac Surg 2020; 78(11): 2032–2041.
http://dx.doi.org/10.1016/j.joms.2020.05.049
10. Das S, Muralidhar A, Tiple S. Clinical profile of thyroid eye disease and factors predictive of disease severity. Indian J Ophthalmol 2020; 68(8): 1629-1634.
http://dx.doi.org/10.4103/ijo.IJO_104_20
11. Traiwanatham S, Sirinvaravong S, Plengvidhya N, Wongsripuemtet J, Lertlam S. RF35 | PSAT262 Comparative Study of Hertel Exophthalmometer and Luedde Exophthalmometer Versus Computed Tomography for Measurement of Proptosis in Normal Subjects. J Endocr Soc 2022; 6(Supplement_1): A860–A861.
http://dx.doi.org/10.1210/jendso/bvac150.1779
12. Delmas J, Loustau JM, Martin S, Bourmault L, Adenis JP, Robert PY. Comparative study of 3 exophthalmometers and computed tomographic biometry. Eur J Ophthalmol 2018; 28(2): 144–149.
http://dx.doi.org/10.5301/ejo.5001049
13. de Juan E. Racial Differences in Normal Values of Proptosis. Arch Intern Med 1980; 140(9): 1230-1231.
http://dx.doi.org/10.1001/archinte.1980.00330200106028
14. Pereira T de S, Kuniyoshi CH, Leite C de A, Gebrim EMMS, Monteiro MLR, Pieroni Gonçalves AC. A Comparative Study of Clinical vs. Digital Exophthalmometry Measurement Methods. J Ophthalmol 2020;2020: 1397410.
http://dx.doi.org/10.1155/2020/1397410
15. Nightingale CL, Shakib K. Analysis of contemporary tools for the measurement of enophthalmos: a PRISMA-driven systematic review. Br J Oral Maxillofac Surg 2019; 57(9): 904-912.
https://doi:10.1016/j.bjoms.2019.06.026.
16. Sun R, Yin Z, Li L, Zhou H, Song X, Li Y. A novel method of measuring proptosis with computed tomography. Acta Radiologica 2023; 64(9): 2603–2610.
http://dx.doi.org/10.1177/02841851231187859
17. Krassas GE, Boboridis KG, Wiersinga WM. Re: “Clinical Features and Treatment of Graves Ophthalmopathy in Pediatric Patients.” Ophthal Plast Reconstr Surg 2006; 22(5): 405–406.
http://dx.doi.org/10.1097/01.iop.0000237095.37109.55
18. Steinberger EE, Vogt AZ, Tan JF. Skin and Bone: Intact Fish Skin to Reconstruct Traumatic Orbital Floor and Wall Defects. Ophthal Plast Reconstr Surg 2024: 40(3): e78-e80.
https://doi:10.1097/IOP.0000000000002594
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Usman Tariq, Muhammad Shahid, Fawad Ahmad Khan, M Kamran Haider, Muhammad Jahanzaib, Abdul Rauf

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





